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Digital Control Loop Design using the Construct 
Method 

Abstract 

This paper introduces foundational concepts in digital signal processing (DSP) with a focus on 

designing control algorithms for power supplies. The material is broken into digestible, intuitive 

segments to support individual learning and gradual skill development. Practical shortcut 

methods are presented to reduce complexity and accelerate progress. Accompanying Mathcad 

worksheets are included to encourage hands-on exploration and deeper understanding. 

 

A key contribution of this tutorial is the introduction of a novel approach that uses a small set of 

fundamental constructs to assemble digital controllers. When paired with a concise set of rules, 

these constructs provide a clear and repeatable path to successful implementation. While DSP is 

a broad field, this targeted method makes it accessible to Power Engineers who traditionally rely 

on analog control techniques. The goal is not to replace formal education, but to fill in practical 

gaps, connect theory to real-world applications, and offer a streamlined process from concept to 

working solution. 
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The information, observations, and conclusions provided in this document are offered as a free 

informational resource. All materials and information are provided "AS IS" and do not constitute 

professional or legal advice. No representation or warranty of any kind, express or implied, is 

made regarding the accuracy, adequacy, validity, reliability, availability, or completeness of the 

information contained in this document. Users should not use this information without 
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1 Introduction 

Digital control loops are often perceived as a complex and specialized domain — one 

seemingly reserved for advanced mathematicians and engineers with access to powerful 

computational tools. However, this perception can be misleading. 

With a foundational understanding of Z-transforms and the C programming language, 

engineers with experience in analog control can effectively transition their skills into the digital 

realm. This transition does not require mastery of abstract mathematics or elaborate simulation 

software, but rather a practical mindset and a structured approach. 

While many excellent texts delve deeply into the theory of Z-transforms and digital filter 

design, they can sometimes overwhelm those looking for a more application-oriented path. 

This resource is designed to bridge that gap — guiding the reader from essential principles to 

real-world implementation. 

The goal is to provide a clear, practical journey from basic understanding to working digital 

control systems, with enough context to build confidence and competence along the way. 

1.1 Tools for the Journey 

This exploration begins with a modest set of technical requirements. At a minimum, a working 

knowledge of algebra is sufficient to follow the underlying concepts. However, to streamline 

analysis and improve clarity, the use of advanced mathematical software is strongly 

recommended. Mathcad®, in particular, offers significant advantages due to its intuitive 

interface and superior documentation capabilities, producing worksheets that are both readable 

and easy to annotate. 

Designing a digital control loop involves two primary tasks: first, determining the coefficients 

that define the loop behavior, and second, implementing those coefficients in a practical, real-

time system. This section focuses on the first task — deriving the coefficients — while laying a 

foundation for implementation strategies discussed later. 

While the individual steps involved in coefficient calculation are important, the most 

significant contribution of this work lies in the introduction of constructs — modular, reusable 

building blocks for digital control design. These constructs offer a powerful framework that 

enables engineers to assemble a wide variety of control networks with efficiency and clarity. 

1.2 Euler’s Formula 

Euler’s formula is said to be the cornerstone of signal processing in general. 

𝑒𝑗𝜃 = cos(𝜃) + 𝑗 sin (𝜃) 

 

Derivations will not be the focus here; however, this formula originates from evaluating the 

infinite Taylor series expansion of the exponential function and extending it to the imaginary 

axis. 

The important take away for engineers is that 𝑒𝑗𝜃  represents a phasor. 
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1.3 Laplace Transform 

The Laplace Transform is a special case of the Fourier Transform designed to solve ordinary 

differential equations (ODE) effectively. 

 

Laplace Transform and Reverse Transform 

 

𝐹(𝑠) =  ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
      𝑓(𝑡) =  

1

𝑗2𝜋
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠

𝜎+𝑗∞

𝜎−𝑗∞
 

 

This topic will not be developed in detail either; however, it is important to recognize it as a 

valuable tool that enables the use of algebraic techniques in the frequency domain as a 

substitute for more complex time-domain mathematics. It is common practice to use lookup 

tables or computational software to solve such equations. For the purposes of this document, a 

short set of transform pairs will be required.  

 

Description 𝒇(𝒕) 𝑭(𝒔) 

Step 1 𝑢(𝑡) 
1

𝑠
 

Decay 𝑒−𝑎𝑡𝑢(𝑡) 
1

𝑠 + 𝑎
 

Charge (1 − 𝑒−𝑎𝑡)𝑢(𝑡) 
𝑎

s (𝑠 + 𝑎)
 

Frequency 

Shift 
𝑒𝑎𝑡 𝑓(𝑡)𝑢(𝑡) 𝐹(𝑠 − 𝑎) 

Time shift 𝑓(𝑡 − 𝑎)𝑢(𝑡 − 𝑎) 𝑒−𝑎𝑠 𝐹(𝑠) 

Convolution ∫ ℎ(𝜏)𝑓(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 H(𝑠)𝐹(𝑠) 

Impulse 𝛿(𝑡 − 𝑡0) 𝑒−𝑠 𝑡0 

Figure 1-1: Laplace Transform Pairs 
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1.3.1 Low Pass Filter Example using Laplace Transform 

The discussion begins with a simple example to demonstrate the usefulness of the Laplace 

transform. A single-pole low-pass filter, shown in  Figure 1-2 , will serve as the illustrative case.  

 

 
Figure 1-2: Low Pass Filter Schematic 

 

Performing a nodal analysis yields… 

 
𝑉𝑜(𝑠) − 𝑉𝑖(𝑠)

𝑅
+

𝑉𝑜(𝑠)

1
𝑠𝐶

= 0 

 

If we create a term 𝛼 such that 𝛼 =
1

𝑅𝐶
  , the equation for the gain of the system becomes… 

 

𝐻(𝑠) =
𝐺(𝑠)

𝐹(𝑠)
=

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=  

𝛼

𝑠 + 𝛼
 

Equation 1-1: Gain of a Single Pole Low Pass Filter 

 

This form is written to make the ‘breakpoint’ readily identifiable. In this case the breakpoint 

is𝛼. 

 

 
Figure 1-3: Single Pole Low Pass Filter Transfer Function H(s) 

 

There is a “Breakpoint” at |𝑠|=𝛼 
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The analysis will remain in the frequency domain, as both the problem statement and the 

resulting expressions are currently intuitive and rely solely on algebraic manipulation. To 

illustrate the relative difficulty of working in the time domain, a brief comparison is provided. 

Using the Laplace transform table shown in Figure 1-1 , the corresponding time-domain transfer 

function is:  ℎ(𝑡) = 𝛼 𝑒−𝛼𝑡  

 

In order to determine the LPF output in the time domain it is required to use convolution. 

  

g(t) = ∫ h(𝜏)f(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

 

Instead of using integration, it is better to stay in the frequency domain. The problem simplifies 

to multiplication. 

 

G(s) = 𝐻(𝑠)𝐹(𝑠) 

The filter’s performance can be analyzed by applying a step function as the input. 

 

G(s) = 𝐻(𝑠)𝐹(𝑠) =
𝛼

𝑠+𝛼
 

1

𝑠
  

 

Now the transform table is used to get the time domain solution. 

 

𝑔(𝑡) = (1 − 𝑒−𝛼𝑡)𝑢(𝑡) 
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1.4 Z – Transform 

The Z transform is a discrete frequency domain function. It is analogous to the Laplace 

transform in the discrete domain. It was created as a tool to solve difference equations by 

allowing the use of algebra in the Z domain as opposed to convolution and integration in the 

discrete time domain. 

 

𝑿(𝒛) = ∑ 𝒙[𝒏]𝒛−𝒏∞
𝒏=𝟎   𝒙[𝒏] =

𝟏

𝒋𝟐𝝅
∫ 𝑿(𝒛)𝒛𝒏−𝟏𝒅𝒛 

Z Transform   Inverse Z Transform 

 

 

  
Time Domain z-Domain 

Step  𝑢[𝑛]  
1

1−𝑧−1 

Decay  𝑒−𝑎𝑛𝑇𝑢[𝑛] 
1

1−𝑒−𝑎𝑇𝑧−1  

Approach  (1 − 𝑒−𝑎𝑛𝑇)𝑢[𝑛] 
1−𝑒−𝑎𝑇

(1−𝑧−1)(1−𝑒−𝑎𝑇𝑧−1)
  

Time Shift  𝑥[𝑛 − 𝑘]  𝑧−𝑘𝑋(𝑧) 

Convolution  ℎ[𝑛] ∗ 𝑓[𝑛]  𝐻(𝑧)𝐹(𝑧) 

Impulse 𝛿[𝑛 − 𝑛0]  𝑒−𝑗𝛼𝑛𝑜   

Figure 1-4: Z Transform Table 
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2 The Cookbook Process 

The following outlines several steps (up to 8) to arrive at a process to take an analog frequency 

domain problem and translate it into a discrete time domain solution. 

 

The process begins with a specified 𝐻(𝑠). Translate 𝐻(𝑠) to the z domain to get 𝐻(𝑧). 

Then translate 𝐻(𝑧) to the discrete time domain arriving at 𝑔(𝑛). 

 

Microprocessors and FPGAs operate in the discrete-time domain. The equation for g(n) can be 

entered directly into their respective environments for execution. 

 

While the process may appear straightforward, successful implementation requires expressing 

𝐻(𝑧) in a normalized recursive form upon reaching the z-domain. Specifically, the 

denominator should have a leading coefficient of 1, as shown below. 

 

 
 

Equation 2-1: H(z) Normal Recursive Form 

 

This is important because 
𝐺(𝑧)

𝐹(𝑧)
= 𝐻(𝑧). By cross multiplying Equation 2-1, an expression for 

G(z) is obtained, which can be solved algebraically. The resulting expression can then be 

translated to the desired g(n) form by inspection. 

 

The unique twist is that the process will be used to develop 4 basic constructs. Once 

developed, the resulting equations will remain the same, only the variable of where to place the 

breakpoints will change. 

 

More complex designs can be implemented by combining any combination of the 4 constructs, 

and then perform algebra to arrive at the final discrete time equations. 
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2.1 Step 1 – Specify the requirement 

The analysis begins with the Low Pass filter example. A numeric value of 10 kHz is assigned 

to the desired breakpoint since Mathcad will be used for demonstration purposes. 

 

𝐻(𝑠) =  
 𝛼 

𝑠+ 𝛼
   where 𝛼 = 2𝜋𝑓𝑏   and 𝑓𝑏 = 10𝑘𝐻𝑧 

 

2.2 Step 2 – Translate to the Time Domain 

Using Tables, Mathcad, or just by inspection, translate this ‘requirement’ to the time domain. 

 

ℎ(𝑡) =  𝛼𝑒−𝛼𝑡𝑢(𝑡) 

 

2.3 Step 3 – Determine h(n) 

The term for ℎ(𝑛) is now needed. This is straight forward. Replace 𝑡 with 𝑛𝑇𝑀 , where 𝑛 is the 

sample number and 𝑇𝑀 is the rate at which math is executed. Then it is necessary to scale by 

𝑇𝑀 . The result is written below. 

 

ℎ(𝑛) =  𝑇𝑀𝛼𝑒−𝑛𝛼𝑇𝑀 𝑢(𝑛𝑇𝑀)   For this example, the math frequency, 𝑇𝑀 is set to 1µS.  

 

Scaling is needed to normalize the result. Consider an integrator which is summing samples of 

a data stream that is always positive. If it is sampling once per second, after 10 seconds it will 

sum 10 samples of the data stream and get to a certain result. Next consider the same integrator 

sampling at once per microsecond. In 10 seconds it would have sampled and added the same 

data stream 10 million times. The result will be 1 million times higher than the first. If each 

result is scaled by the sample rate, each case will be made to provide a similar result. 

2.4 Step 4 – Translate to the z Domain 

Using the Z transform table, Mathcad, or by inspection, the result is transformed to the z 

domain. 

 

𝐻(𝑧) =  
𝛼𝑇𝑀

1 − 𝑒−𝛼𝑇𝑀 𝑧−1
 

 

2.5 Step 5 – Format the Result 

The result must now be formatted to the normal recursive form consistent with Equation 2-1. 

In this case it is already in that format. 
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2.6 Step 6 – Solve for G(z) 

As stated earlier, 
𝐺(𝑧)

𝐹(𝑧)
= 𝐻(𝑧). 

In this case… 

 
𝐺(𝑧)

𝐹(𝑧)
=  

𝛼𝑇𝑀

1 − 𝑒−𝛼𝑇𝑀 𝑧−1
 

 
Equation 2-2: Solving for G(z) 

 

Now the leading 1 in the denominator becomes useful. 

 

𝐺(𝑧) =  𝑏0𝐹(𝑧) +  𝑎1𝐺(𝑧)𝑧−1 , where 𝑏0 =  𝑇𝑀𝛼1 , and 𝑎1 =  𝑒−𝛼𝑇𝑀. 

 

2.7 Step 7 – Perform an Inverse z Transform 

By using the time shift theorem in table of Figure 1-4, we get the difference formula. 

 

𝑔𝑛 =  𝑏0𝑓𝑛 + 𝑎1𝑔𝑛−1 
 

The first of four constructs Completed! 

2.8 Step 8 – Check Your Results 

Not quite done. It is always best to check results. This can be done in actual hardware, excel, or 

Mathcad. It is best to use Mathcad to get time domain and frequency domain results. 
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Frequency Domain Plot of the Discrete LPF 

 
 

To create the graph, z is replaced with 𝑒𝑗2𝜋𝑓𝑇𝑚  . After all, that is what z is, a phasor. 

There are a few interesting points to note. First is that at 10 kHz, the gain is -3db and the phase 

is 
−𝜋

4
 . Therefore, the problem statement is solved and mission accomplished. 

Next, notice that the filter stops working at some point. When 𝑓𝑇𝑀 is at 
1

2
 , z is at π. 

At this frequency, the filter has its greatest attenuation. Then as z moves further counter-

clockwise, from π to 2π, the filter produces the complex conjugate of the attenuation values 

that it produced in the first half of the sweep.  

 

For purposes of attenuation, we should not count on the filter anywhere above ½ the math 

frequency.  
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3 The Four Constructs 

The details of the remaining constructs are covered on an accompanying Mathcad worksheet. 

The results are provided in the following paragraphs. 

3.1 Integrator Construct 

 
 

𝐻(𝑧) =  
𝑏0

1−𝑧−1
   where   𝑏0 =  𝛼𝑇𝑀 

3.2 Single Pole (LPF) Construct 

 
 

𝐻(𝑧) =  
𝑏0

1−𝑎1𝑧−1
   where   𝑏0 =  𝛼𝑇𝑀 and   𝑎1 =  𝑒−𝛼𝑇𝑀 

3.3 Differentiator Construct 

 
 

𝐻(𝑧) =  𝑏0 + 𝑏1𝑧−1   where   𝑏0 =  
1

𝛼𝑇𝑀
 and   𝑏1 =  

−1

𝛼𝑇𝑀
 

3.4 Single Zero Construct 

 
 

𝐻(𝑧) =  𝑏0 + 𝑏1𝑧−1   where   𝑏0 =  
1

𝛼𝑇𝑀
 and   𝑏1 =  

−𝑒−𝛼𝑇𝑀

𝛼𝑇𝑀
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4 Applying Constructs 

Armed with the constructs, there is no need to use transforms, but place more focus more on 

algebra. 

 

Many filter configurations can be assembled by multiplying various constructs, then only 

perform algebra to get the resulting equation into the normal recursive form. Once in that form, 

the coefficients drop out by inspection. 

 

Notice that the Single Zero construct and the Single Pole construct were made to have a value 

of 1 at frequencies below the breakpoint. This was done intentionally, so that when multiplying 

these with other constructs, they will have no effect at frequencies below their breakpoints. 

 

Likewise, for the Integrator and Differentiator constructs, the critical frequency where the gain 

equals 1 is identified, so that when multiplied with other constructs, the critical frequency will 

be preserved. This has the effect of adding a slope if required and setting the total gain with a 

single coefficient. 

 

4.1  Constructing a High Pass Filter 

The first example will be to construct a Single Pole High Pass Filter. In the frequency domain, 

it is desired to start with a single slope increasing, then at some breakpoint, the gain will flatten 

and remain flat. 

To achieve this, the process begins with a Differentiator Construct, this gives us the positive 

slope, and then follow that with a LPF Construct which will introduce a pole and flatten out the 

gain. 
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0.01

0.1

1

10

100

10 100 1000 10000

Frequency

G
a

in

Gain LPF

Gain Diff

Result HPF



Digital Control Loop Design 

Digital Control Loop Design.docx   
Copyright © VITO DERASMO 2026. All Rights Reserved. 
 Page 13 of 24 

For purposes of demonstration, a break frequency of 100 Hz is selected and the math update 

time of 25µS is selected. 

 

𝑓𝑏 = 100𝐻𝑧      𝑇𝑀 = 25µ𝑆 

 

The s domain breakpoint is calculated as 𝛼𝑏 = 2𝜋𝑓𝑏  

 

Now two of the constructs from section 3 are used. 

 

𝐻𝐷𝑖𝑓𝑓 (𝑧) =  
1−𝑧−1

𝑇𝑀𝛼𝑏
  𝐻𝐿𝑃𝐹(𝑧) =  𝑇𝑀𝛼𝑏

1

1− 𝑒−𝑇𝑀𝛼𝑏 𝑧−1  

 

These two constructs are in series. To get the resulting gain, they are multiplied. 

 

𝐻𝐻𝑃𝐹(𝑧) =  𝐻𝐷𝑖𝑓𝑓 (𝑧) 𝑥 𝐻𝐿𝑃𝐹(𝑧) =  
1 − 𝑧−1

1 −  𝑒−𝑇𝑀𝛼𝑏 𝑧−1
 

 

The coefficients are visible by inspection. 

 

𝑏0 = 1 𝑏1 =  −1 𝑎1 =   𝑒−𝑇𝑀𝛼𝑏   
 

Done! Only algebra and a few short steps were needed. 

 

4.1.1 High Pass Filter Evaluation 

The equation can be entered in Mathcad for evaluation. In the discrete time domain… 

 

𝑔𝑛 =  𝑓𝑛 −  𝑓𝑛−1 +  𝑎1𝑔𝑛−1 
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Then in the frequency domain, 

 

𝐻𝑎(𝑓) = 𝐻𝐻𝑃𝐹(𝑒𝑗2𝜋𝑓𝑇𝑀 ) 

 

 
 

Here it is shown that the gain is increasing with a positive slope of 1 until the frequency 

reaches the breakpoint of 100 Hz. At that point, the gain is -3db and the slope if flattening. 
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4.2 Construct Example to Build a Type II Network 

A Type II network starts as an integrator then a zero comes in at some breakpoint followed by a 

pole at the next breakpoint. A gain greater than 1 in introduced as well. 

 

 
 

 

It should be obvious that the problem is solved by starting with an integrator, and then 

introduce a single zero at the first breakpoint, then a pole at the second breakpoint. The 3 

constructs are shown below. 
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To set the gain as required, the integrator cross over must be 10 kHz, the breakpoint for the zero is 

at 1 kHz, and the final pole is at 5 kHz. 

𝑓𝑏1 = 10𝑘𝐻𝑧  𝑓𝑏2 = 1𝑘𝐻𝑧  𝑓𝑏3 = 5𝑘𝐻𝑧 

The same math processing rate of 25µS will be used. 

 

Now the constructs from section 3 are used. 

 

The gain for the Type 2 network will be the multiplication of these 3 terms. 

𝐻𝑇2(𝑧) =  −𝐻𝐼𝑛𝑡(𝑧) 𝐻𝑍𝑒𝑟𝑜(𝑧) 𝐻𝐿𝑃𝐹(𝑧) 

Use of the negative sign is optional. It needs to be applied if the feedback signal is generated by 

taking the measurement then subtracting the set-point (𝑉𝐹𝐵 =  𝑉𝑀𝑒𝑎𝑠 −  𝑉𝑆𝑃). Many digital 

controllers have library routines that generate 𝑉𝐹𝐵  in the opposite direction (𝑉𝐹𝐵 =  𝑉𝑆𝑃 −  𝑉𝑀𝑒𝑎𝑠). 

The required inversion is already built into the library function. They have done this to match the 

legacy analog ICs which use positive values only so that a single positive Vcc voltage would be 

required. 

As promised, only algebra is required. Unlike the previous example, which was intentionally made 

to have terms cancel out, there is no cancelation here. There remains a tedious exercise to find the 

coefficients. 

Luckily, this only needs to be worked out once, then the heavy lifting can be done using Mathcad, 

Excel, Java etc. Mathcad is the best for documentation purposes, it is shown here. 

First, the denominators will be combined and the coefficients extracted. 

 

It looks complicated, but only copy and paste is required to place these into the equation. 
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A few minor adjustments are required. First because Mathcad is producing coefficients for z as 

opposed to 𝑧−1. To address this we need to reverse the order. Second, when we solve for G(z) 

the 𝑎𝑛 values are moved to the opposite side, so we will need the additive inverse. (See 

Equation 2-2) 

 

 
 

The next step involves determining the b coefficients for the numerator. Writing a term for the 

numerator is not as immediately visible as was the denominator. To simplify the effort, the 

total term, 𝐻𝑇2(𝑧), is multiplied by the denominator, which was visible. Then let Mathcad do 

the work. 

 

 Now for the final extraction, the order needs to be reversed as before,. The inverse is not 

needed since the 𝑏𝑛 terms are already on the correct side of the equation. 

 

 
 

We now have the answer in the z domain and the discrete time domain. 

 

 

 

  
 

Notice – There are 2 poles (a1 and a2 ) and 1 zero (b1 ). Terms a0 and b0 do not create any 

frequency dependent terms. The term a0 is always equal to 1 and is incorporated into 𝑔𝑛. 
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4.2.1 Result Check for the Type II Network 

 

 
 

 

The frequency domain is plotted using the same substitution as before. The resulting gain and 

breakpoints are in line with the problem statement. 
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5 IIR vs. FIR 

When working in the discrete time domain, it is best to understand these terms and the baggage 

that comes with each of them. We’ll dissect these terms in reverse order. 

 

5.1 Impulse Response 

This part of the term refers to the frequency domain response when a time domain impulse is 

applied. This is true for continuous and discrete situations. We will focus on the discrete case. 

 

In discrete time, an impulse, or delta function is one for n=0 and 0 for all other n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performing a Discrete Fourier Transform on the delta function yields a flat spectrum with 

amplitude of 1 and no phase shift for all frequencies. 

 

 

 

 

 

 

 

Therefore, if a time domain impulse is applied to the input, the response will be the gain of the 

system. 
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5.2 Significance of Finite vs. Infinite 

 

FIR      IIR 

 

    
 

 

The FIR uses present and past values of the input to produce the output. It does not have 

memory of its current state or any past states. An IIR also uses present and past values of the 

input, but also uses past values of the output. This system has memory. Theoretically, the 

output will continue forever since past values of output are used as input. 

 

5.3 Examples of FIR and IIR 

 

One example of a FIR is a moving average filter. This is perhaps the easiest digital filter to 

imagine and implement. Here, the present input value is added to a finite number of past 

values, then scaled by the number of total samples. 

 

 
 

An arguable similar IIR version would be a low pass filter, where the incoming data has the 

same weight as the FIR example and the remaining weight is allotted to its last state. 

 

 
 

  



Digital Control Loop Design 

Digital Control Loop Design.docx   
Copyright © VITO DERASMO 2026. All Rights Reserved. 
 Page 21 of 24 

 

 
Both filters are excited by the same input pulse. At the start of the pulse the filters have a 

similar slew rate but they quickly begin to diverge. By 10 samples, the FIR is saturated and at 

its final value. The IIR with only one memory value and less complex math exponentially 

approaches its final value. 

 

 

A sampling rate of 200 kHz is applied to these filters to produce frequency domain graphs. 
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6 Short-Cut to LPF (Working in Reverse) 

Using the previous example... 

 

 
Simply use the equation from section 3.2Single Pole (LPF) Construct 

 

𝑎1 = 0.9 =  𝑒−𝛼𝑇𝑀      𝑤ℎ𝑒𝑟𝑒 𝛼 = 2𝜋𝑓𝑐  
 

Solve for frequency.  𝑓𝑐 = 3.35𝑘𝐻𝑧 

 

Done. 

 

6.1 Short-Cut to Create LPF 

Example to create a 10 kHz single pole LPF in a system processing math at 200 kHz. 

 

𝛼 = 2𝜋𝑓𝑐 = 62,832 

 

The decay factor 𝑎1 =  𝑒−𝛼𝑇𝑀 = 0.73. 
𝑏0 = 1 −  𝑎1 

 

Done. 
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7 Convergence 

IIRs have a feedback term, therefore there is a potential for them to be unstable. In order to 

launch results out into the world, the stability must be verified.. 

Luckily, only 2 of the four constructs have a feedback term. The constructs without feedback 

will always be stable and converge to zero. 

The two that do have feedback, have a similar form. The only difference is the value for 𝑎1 

 

𝐻(𝑧) =  
𝑏0

1 − 𝑎1𝑧−1
 

 

𝑔𝑛 = 𝑓𝑛𝑏0 + 𝑔𝑛−1𝑎1 
 

Looking at the discrete time domain equation above, stable results will be provided when 

0 ≤  𝑎1  ≤ 1. 
 

This is seen in how the equation responds to an impulse and how it responds to a sustained 

value. 

 

 After an impulse, 𝑔𝑛 will take on a value and 𝑓𝑛 will be zero. 

 

If 𝑎1 = 0   𝑔𝑛 will become zero instantly.     ✔ 

 

If 𝑎1 = 1   𝑔𝑛 will stay at 𝑔𝑛−1indefinitely.     ✔ 

 

If 0 < 𝑎1 <  1  𝑔𝑛 will decay exponentially towards zero.    ✔ 

 

If 1 < 𝑎1   𝑔𝑛 will increase indefinitely.      ✖ 

 

If −1 < 𝑎1 <  0  𝑔𝑛 will decay, but oscillate between positive and negative values. ✖ 

 

If 𝑎1 =  −1  𝑔𝑛 will oscillate between −𝑔𝑛−1 and 𝑔𝑛−1.    ✖ 

 

If 𝑎1 <  −1  |𝑔𝑛| will increase indefinitely.     ✖ 

 

For a converging LPF Construct, an impulse input will converge to zero and be stable. ✔ 

For any sustained input, the LPF will converge to that input value times 𝑏0.   ✔ 

For a converging Integrator Construct, an impulse settles to a fixed value and holds it.  ✔ 

A sustained value will cause the integrator to increase indefinitely.    ✖ 

 

Therefore, any combination of constructs will always converge as long as only ONE 

integrator is used. 
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8 Conclusion 

 

This paper has introduced a straightforward, construct-based methodology for generating 

digital signal processing (DSP) coefficients. By leveraging a small set of reusable constructs, 

the approach simplifies the transition from control design concepts to practical implementation. 

Through worked examples, the method has been shown to be both accessible and effective, 

enabling rapid development of stable control structures without the need for extensive 

symbolic manipulation. 

 

Beyond demonstration, a convergence argument has been presented, ensuring that the method 

consistently yields correct and stable results under typical design conditions. The constructs not 

only reduce computational and conceptual overhead but also provide a framework that can be 

extended to more complex control systems with confidence. 

 

 


