Digital Control Loop Design using the Construct
Method

Abstract

This paper introduces foundational concepts in digital signal processing (DSP) with a focus on
designing control algorithms for power supplies. The material is broken into digestible, intuitive
segments to support individual learning and gradual skill development. Practical shortcut
methods are presented to reduce complexity and accelerate progress. Accompanying Mathcad
worksheets are included to encourage hands-on exploration and deeper understanding.

A key contribution of this tutorial is the introduction of a novel approach that uses a small set of
fundamental constructs to assemble digital controllers. When paired with a concise set of rules,
these constructs provide a clear and repeatable path to successful implementation. While DSP is
a broad field, this targeted method makes it accessible to Power Engineers who traditionally rely
on analog control techniques. The goal is not to replace formal education, but to fill in practical
gaps, connect theory to real-world applications, and offer a streamlined process from concept to
working solution.
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Digital Control Loop Design

1 Introduction

Digital control loops are often perceived as a complex and specialized domain — one
seemingly reserved for advanced mathematicians and engineers with access to powerful
computational tools. However, this perception can be misleading.

With a foundational understanding of Z-transforms and the C programming language,
engineers with experience in analog control can effectively transition their skills into the digital
realm. This transition does not require mastery of abstract mathematics or elaborate simulation
software, but rather a practical mindset and a structured approach.

While many excellent texts delve deeply into the theory of Z-transforms and digital filter
design, they can sometimes overwhelm those looking for a more application-oriented path.
This resource is designed to bridge that gap — guiding the reader from essential principles to
real-world implementation.

The goal is to provide a clear, practical journey from basic understanding to working digital
control systems, with enough context to build confidence and competence along the way.

1.1 Tools for the Journey

This exploration begins with a modest set of technical requirements. At a minimum, a working
knowledge of algebra is sufficient to follow the underlying concepts. However, to streamline
analysis and improve clarity, the use of advanced mathematical software is strongly
recommended. Mathcad®, in particular, offers significant advantages due to its intuitive
interface and superior documentation capabilities, producing worksheets that are both readable
and easy to annotate.

Designing a digital control loop involves two primary tasks: first, determining the coefficients
that define the loop behavior, and second, implementing those coefficients in a practical, real-
time system. This section focuses on the first task — deriving the coefficients — while laying a
foundation for implementation strategies discussed later.

While the individual steps involved in coefficient calculation are important, the most
significant contribution of this work lies in the introduction of constructs — modular, reusable
building blocks for digital control design. These constructs offer a powerful framework that
enables engineers to assemble a wide variety of control networks with efficiency and clarity.

1.2 Euler’s Formula

Euler’s formula is said to be the cornerstone of signal processing in general.
e’® = cos(0) + j sin(h)

Derivations will not be the focus here; however, this formula originates from evaluating the
infinite Taylor series expansion of the exponential function and extending it to the imaginary
axis.

The important take away for engineers is that e/ represents a phasor.
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1.3 Laplace Transform

The Laplace Transform is a special case of the Fourier Transform designed to solve ordinary
differential equations (ODE) effectively.

Laplace Transform and Reverse Transform

F(s) = fooof(t)e‘“dt f(t) = jzinfﬁjm eStF(s)ds

g—joo

This topic will not be developed in detail either; however, it is important to recognize it as a
valuable tool that enables the use of algebraic techniques in the frequency domain as a
substitute for more complex time-domain mathematics. It is common practice to use lookup
tables or computational software to solve such equations. For the purposes of this document, a
short set of transform pairs will be required.

a
- eat f(t)u(t) F(S ) a)
- oo
- f h()f(t — t)dr H(s)F(s)
e -

Figure 1-1: Laplace Transform Pairs
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1.3.1 Low Pass Filter Example using Laplace Transform

The discussion begins with a simple example to demonstrate the usefulness of the Laplace
transform. A single-pole low-pass filter, shown in Figure 1-2 , will serve as the illustrative case.

Vi(s) ¢ "g“»r J o Vo(s)
1/sC

=0
Figure 1-2: Low Pass Filter Schematic

Performing a nodal analysis yields...

Vo(s) — Vi(s) N Vo(s) 0

R 1
sC
If we create a term a such that a = % , the equation for the gain of the system becomes...

G(s) Vo(s) «a

H(s) = = =
(s) F(s) Vi(s) st+a
Equation 1-1: Gain of a Single Pole Low Pass Filter

This form is written to make the ‘breakpoint’ readily identifiable. In this case the breakpoint

oL

Figure 1-3: Single Pole Low Pass Filter Transfer Function H(s)

There is a “Breakpoint” at |s|=a
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The analysis will remain in the frequency domain, as both the problem statement and the
resulting expressions are currently intuitive and rely solely on algebraic manipulation. To
illustrate the relative difficulty of working in the time domain, a brief comparison is provided.
Using the Laplace transform table shown in Figure 1-1 , the corresponding time-domain transfer

functionis: h(t) = ae™*

In order to determine the LPF output in the time domain it is required to use convolution.

t

o(t) = j h(Df(t — T)dr

0

Instead of using integration, it is better to stay in the frequency domain. The problem simplifies
to multiplication.

G(s) = H(s)F(s)
The filter’s performance can be analyzed by applying a step function as the input.

G(s) = H(s)F(s) = = 1

sta s

Now the transform table is used to get the time domain solution.

g(@®) = (1 —e *u(t)

LPF - Time Domain Representation

\ —nh(t)

\ —f(t)
N\ alt)
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1.4 Z-Transform

The Z transform is a discrete frequency domain function. It is analogous to the Laplace
transform in the discrete domain. It was created as a tool to solve difference equations by
allowing the use of algebra in the Z domain as opposed to convolution and integration in the
discrete time domain.

X(z) = Y gx[n]z ™ x[n] = ]_Zian(z)z"‘ldz

Z Transform Inverse Z Transform

1
u[n] 1_Z—1
—anT 1
e” ™ u[n] e aT, 1
1_e—aT

(1—e~*"Nufn]

(1-z 1) (1-e-aTz-1)

x[n —k] z7*X(2)
hln] * f[n] H(z)F(z)
6[n —ng e Jano

Figure 1-4: Z Transform Table
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2 The Cookbook Process

The following outlines several steps (up to 8) to arrive at a process to take an analog frequency
domain problem and translate it into a discrete time domain solution.

The process begins with a specified H(s). Translate H(s) to the z domain to get H(z2).
Then translate H(z) to the discrete time domain arriving at g(n).

Microprocessors and FPGAs operate in the discrete-time domain. The equation for g(n) can be
entered directly into their respective environments for execution.

While the process may appear straightforward, successful implementation requires expressing
H(z) in a normalized recursive form upon reaching the z-domain. Specifically, the
denominator should have a leading coefficient of 1, as shown below.

-1 -
b()+bll +---+bn‘Z
H(z) =

| — ] - m
od B T Ayt

Equation 2-1: H(z) Normal Recursive Form

This is important because % = H(z). By cross multiplying Equation 2-1, an expression for
G(2) is obtained, which can be solved algebraically. The resulting expression can then be
translated to the desired g(n) form by inspection.

The unique twist is that the process will be used to develop 4 basic constructs. Once
developed, the resulting equations will remain the same, only the variable of where to place the
breakpoints will change.

More complex designs can be implemented by combining any combination of the 4 constructs,
and then perform algebra to arrive at the final discrete time equations.
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2.1 Step 1 - Specify the requirement
The analysis begins with the Low Pass filter example. A numeric value of 10 kHz is assigned
to the desired breakpoint since Mathcad will be used for demonstration purposes.

H(s) = —— where @ = 2nf, and f, = 10kHz

2.2 Step 2 - Translate to the Time Domain

Using Tables, Mathcad, or just by inspection, translate this ‘requirement’ to the time domain.

h(t) = ae *u(t)

2.3 Step 3 — Determine h(n)

The term for h(n) is now needed. This is straight forward. Replace t with nT,, , where n is the
sample number and T}, is the rate at which math is executed. Then it is necessary to scale by
T), . The result is written below.

h(n) = Tyae ™™y (nT,) For this example, the math frequency, T), is set to 1uS.

Scaling is needed to normalize the result. Consider an integrator which is summing samples of
a data stream that is always positive. If it is sampling once per second, after 10 seconds it will
sum 10 samples of the data stream and get to a certain result. Next consider the same integrator
sampling at once per microsecond. In 10 seconds it would have sampled and added the same
data stream 10 million times. The result will be 1 million times higher than the first. If each
result is scaled by the sample rate, each case will be made to provide a similar result.

2.4 Step 4 — Translate to the z Domain

Using the Z transform table, Mathcad, or by inspection, the result is transformed to the z
domain.

aTy
H(z) = 1 — e—aTmz-1
2.5 Step 5- Format the Result

The result must now be formatted to the normal recursive form consistent with Equation 2-1.
In this case it is already in that format.
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2.6 Step 6 — Solve for G(z2)

ior 62) _
As stated earlier, o H(z).

In this case...

G(z) _ aTy
F(z) 1—e9Tmz-1

Equation 2-2: Solving for G(z)
Now the leading 1 in the denominator becomes useful.

G(Z) = boF(Z) + alG(Z)Z_l ,Whel’e bo = TMCZ1 ) and a, = e_aTM.

2.7 Step 7 —Perform an Inverse z Transform

By using the time shift theorem in table of Figure 1-4, we get the difference formula.

In = bofn + a19n—1
The first of four constructs Completed!

2.8 Step 8 — Check Your Results

Not quite done. It is always best to check results. This can be done in actual hardware, excel, or
Mathcad. It is best to use Mathcad to get time domain and frequency domain results.

1« IVII .

e =y 1,

The dighal domain 1esponss is plothed

ST
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Frequency Domain Plot of the Discrete LPF
H,(f) = H‘.c’ el m)

ll ) [l)

I P ~ 200. fh
10 5 >
10
1 — =
IHa( f)| ! . i ‘«-\_‘__\L. : i
w —— R/
e — T N
001 T
1-10 0.01 01 1 10
f
1000000
05
f
arg{H () / /|
! 1 iy 4 /
3 e M g / /
- ]
T L L e v
=03 =3 J
1-10 0.01 0.1 1 10

1000000

To create the graph, z is replaced with e/2%/Tm _ After all, that is what z is, a phasor.

There are a few interesting points to note. First is that at 10 kHz, the gain is -3db and the phase
- —TT - - - -

is—~. Therefore, the problem statement is solved and mission accomplished.

Next, notice that the filter stops working at some point. When fT), is at % ,Zis at 7.

At this frequency, the filter has its greatest attenuation. Then as z moves further counter-
clockwise, from = to 2m, the filter produces the complex conjugate of the attenuation values
that it produced in the first half of the sweep.

For purposes of attenuation, we should not count on the filter anywhere above %2 the math
frequency.
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3 The Four Constructs

The details of the remaining constructs are covered on an accompanying Mathcad worksheet.
The results are provided in the following paragraphs.

3.1 Integrator Construct

H(z) = 1_1920_1 where by = aTy,

3.2 Single Pole (LPF) Construct

1

AN

oL

— bo — — p,—aT

H(z) = a1 where by = aTy and a; = e”*'M
3.3 Differentiator Construct

H(z) = by + byz™1 where by = L and b, = —1

0 1 0 aTy aTpy
3.4 Single Zero Construct
o
H(z) = by + byz™" where by = g and by T
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4 Applying Constructs

Armed with the constructs, there is no need to use transforms, but place more focus more on
algebra.

Many filter configurations can be assembled by multiplying various constructs, then only
perform algebra to get the resulting equation into the normal recursive form. Once in that form,
the coefficients drop out by inspection.

Notice that the Single Zero construct and the Single Pole construct were made to have a value
of 1 at frequencies below the breakpoint. This was done intentionally, so that when multiplying
these with other constructs, they will have no effect at frequencies below their breakpoints.

Likewise, for the Integrator and Differentiator constructs, the critical frequency where the gain
equals 1 is identified, so that when multiplied with other constructs, the critical frequency will
be preserved. This has the effect of adding a slope if required and setting the total gain with a
single coefficient.

4.1 Constructing a High Pass Filter

The first example will be to construct a Single Pole High Pass Filter. In the frequency domain,
it is desired to start with a single slope increasing, then at some breakpoint, the gain will flatten
and remain flat.

To achieve this, the process begins with a Differentiator Construct, this gives us the positive
slope, and then follow that with a LPF Construct which will introduce a pole and flatten out the
gain.
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For purposes of demonstration, a break frequency of 100 Hz is selected and the math update
time of 25uS is selected.

f, = 100Hz Ty = 25uS
The s domain breakpoint is calculated as a;, = 21 f,,

Now two of the constructs from section 3 are used.

z 1 1

1
Hipr(2) = Tuap T—=yay =1

Tmap

HDiff (z) =
These two constructs are in series. To get the resulting gain, they are multiplied.

1-—2z1

- e—TMab Z—l

Hypr(z) = HDiff(Z) x Hipp(z) = 1
The coefficients are visible by inspection.
bO =1 bl = -1 a; = e~ Tmap

Done! Only algebra and a few short steps were needed.

4.1.1 High Pass Filter Evaluation

The equation can be entered in Mathcad for evaluation. In the discrete time domain...

In = fo— fa-1t+ @G-

2 T T | T

0 20 40 60 80 100

n
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Then in the frequency domain,

Hy(f) = HHPF(ejznfTM)

10

0

0.01

0.6

0.4 Sw

arg( H (1) ) 0.2 e N

-04

- 0.6

_ = 3
1x10 1< 10

1x10 ~ 0.01
£
1000000

Here it is shown that the gain is increasing with a positive slope of 1 until the frequency
reaches the breakpoint of 100 Hz. At that point, the gain is -3db and the slope if flattening.
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4.2 Construct Example to Build a Type Il Network

A Type Il network starts as an integrator then a zero comes in at some breakpoint followed by a
pole at the next breakpoint. A gain greater than 1 in introduced as well.

Typical Type Il Compensation Curve
1000
100
c
8 — Type Il
10 ~
1
10 100 1000 10000
Frequency

It should be obvious that the problem is solved by starting with an integrator, and then
introduce a single zero at the first breakpoint, then a pole at the second breakpoint. The 3
constructs are shown below.

Constructs making up a Type Il Compensation Curve
1000
~
~
~
=~ ~
100 <
~
S . — - Gain ZFP
£ ~ .
[ 10 ~ = — - Gain fbz
) ~ - .
e Gain LPF
-~ ~
l B = ~
0.1
10 100 1000 10000
Frequency
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To set the gain as required, the integrator cross over must be 10 kHz, the breakpoint for the zero is
at 1 kHz, and the final pole is at 5 kHz.

fo1 = 10kHz foz = 1kHz fys = 5kHz

The same math processing rate of 25uS will be used.
o) =21 £y oy =27 fi5 o3 = 27 - fi3

Now the constructs from section 3 are used.

I m

; |
| HZero(z) ) a1

Hlnt(z)

o
| -2 m

The gain for the Type 2 network will be the multiplication of these 3 terms.

Hry(2) = —Hpn(2) Hzero(2) Hypr(2)

Use of the negative sign is optional. It needs to be applied if the feedback signal is generated by
taking the measurement then subtracting the set-point (Veg = Viyeas — Vsp). Many digital
controllers have library routines that generate V5 in the opposite direction (Vrg = Vsp — Vieas)-
The required inversion is already built into the library function. They have done this to match the
legacy analog ICs which use positive values only so that a single positive Vcc voltage would be
required.

As promised, only algebra is required. Unlike the previous example, which was intentionally made
to have terms cancel out, there is no cancelation here. There remains a tedious exercise to find the
coefficients.

Luckily, this only needs to be worked out once, then the heavy lifting can be done using Mathcad,
Excel, Java etc. Mathcad is the best for documentation purposes, it is shown here.

First, the denominators will be combined and the coefficients extracted.

—TT {
|
| lifs \Z—@ J-(z—1) " | I
Vden = mmphty — ~ coefls — | - =

Denommator Denominator

From fb1 From {b3 1

It looks complicated, but only copy and paste is required to place these into the equation.
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A few minor adjustments are required. First because Mathcad is producing coefficients for z as
opposed to z~1. To address this we need to reverse the order. Second, when we solve for G(z)
the a,, values are moved to the opposite side, so we will need the additive inverse. (See
Equation 2-2)

The next step involves determining the b coefficients for the numerator. Writing a term for the
numerator is not as immediately visible as was the denominator. To simplify the effort, the
total term, Hy,(z), is multiplied by the denominator, which was visible. Then let Mathcad do
the work.

; S5-m-e 5-m 5 . 20
y - : > = ~aeff : ™
Vi simphfv —» g - coeffs — 5. (c \,

( ..'u';lvlv' l | !]:_-w;-.‘u-v ator . ~

Now for the final extraction, the order needs to be reversed as before,. The inverse is not
needed since the b,, terms are already on the correct side of the equation.

p=0:1

I [ -7.854 )
hl\ = _(‘num]l_l]] h 2

\6.7123

We now have the answer in the z domain and the discrete time domain.

Notice — There are 2 poles (a; and a, ) and 1 zero (b; ). Terms ap and by do not create any
frequency dependent terms. The term ao is always equal to 1 and is incorporated into g,,.
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4.2.1 Result Check for the Type Il Network

_‘-‘-‘_\_‘--'_""-\—._‘_\___
10 T
) N o e M N O P2 N B
|H, (0|
1
0.01
1107 " 110 1107 ° 0.01 0.1
:
1 T
T r/
0.5 —
arg{H,(£))
o
"
—_— —05
1 =il
110" 10 Ix107° 001 01
£
1000000

The frequency domain is plotted using the same substitution as before. The resulting gain and
breakpoints are in line with the problem statement.
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5 IIRvs.FIR

When working in the discrete time domain, it is best to understand these terms and the baggage
that comes with each of them. We’ll dissect these terms in reverse order.

5.1 Impulse Response

This part of the term refers to the frequency domain response when a time domain impulse is
applied. This is true for continuous and discrete situations. We will focus on the discrete case.

In discrete time, an impulse, or delta function is one for n=0 and 0 for all other n.

1 n=10

Ll PR

1.00 + [

0.00 4 @ & . 4 -

— 9
[
L J
L

Performing a Discrete Fourier Transform on the delta function yields a flat spectrum with
amplitude of 1 and no phase shift for all frequencies.

o0
X [a] = Z o [n] e 1M -1 for all o
n=-—o0o0

Therefore, if a time domain impulse is applied to the input, the response will be the gain of the
system.
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5.2 Significance of Finite vs. Infinite

FIR IR
‘—f[n]—-
. [n]4>
—f[n-m]-»
—f[n]—» .
: —gln}— :
—f[n-m] : 5
(n-m)- T

The FIR uses present and past values of the input to produce the output. It does not have
memory of its current state or any past states. An IIR also uses present and past values of the
input, but also uses past values of the output. This system has memory. Theoretically, the
output will continue forever since past values of output are used as input.

5.3 Examples of FIR and IIR

One example of a FIR is a moving average filter. This is perhaps the easiest digital filter to
imagine and implement. Here, the present input value is added to a finite number of past
values, then scaled by the number of total samples.

gFan - ”'I'(rn i) [u—l 23 ‘n—l 3 ]11—3 24 ln~-l 1) fn—S i rn-(w 13 '11—7 n-_8 p rll”")’

An arguable similar IIR version would be a low pass filter, where the incoming data has the
same weight as the FIR example and the remaining weight is allotted to its last state.

gIIR = 0.1+ 0~98||Rn i
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1.1

' ] )
[\ .

=l 'R,,u,.\
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Both filters are excited by the same input pulse. At the start of the pulse the filters have a
similar slew rate but they quickly begin to diverge. By 10 samples, the FIR is saturated and at
its final value. The IR with only one memory value and less complex math exponentially
approaches its final value.

A sampling rate of 200 kHz is applied to these filters to produce frequency domain graphs.

( j-21rf-Hz-Tm) (j.zw t’-Hz-Tm)
Hapjp(f) = Hppr\e Hayjp(f) = Hyg\e

% : , |
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6 Short-Cut to LPF (Working in Reverse)

Using the previous example...

) = 0.1f + 09g
’-“lan n EIIRn i

Simply use the equation from section 3.2Single Pole (LPF) Construct
a, =09 = e *™ where a = 2nf,
Solve for frequency. f. = 3.35kHz

Done.

6.1 Short-Cut to Create LPF

Example to create a 10 kHz single pole LPF in a system processing math at 200 kHz.
a = 2nf. = 62,832

The decay factor a, = e~*™ = (.73.
bo = 1 - a1

Done.
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7 Convergence

IIRs have a feedback term, therefore there is a potential for them to be unstable. In order to
launch results out into the world, the stability must be verified..

Luckily, only 2 of the four constructs have a feedback term. The constructs without feedback
will always be stable and converge to zero.

The two that do have feedback, have a similar form. The only difference is the value for a,

by

H(z) = ————
(Z) 1 - alz_l

In = fabo + gn-104

Looking at the discrete time domain equation above, stable results will be provided when
0 < aq <1.

This is seen in how the equation responds to an impulse and how it responds to a sustained
value.

After an impulse, g,, will take on a value and f,, will be zero.

Ifa, =0 gn Will become zero instantly.

Ifa, =1 gn Will stay at g,,_, indefinitely.

Ifo<a, <1 g Will decay exponentially towards zero.

Ifl1<a, gn Will increase indefinitely.

If-1<a, <0 g Will decay, but oscillate between positive and negative values.
Ifa, = —1 gn Will oscillate between —g,,_; and g,,_4.

Ifa, < —1 | g | will increase indefinitely.

For a converging LPF Construct, an impulse input will converge to zero and be stable.
For any sustained input, the LPF will converge to that input value times b,.

For a converging Integrator Construct, an impulse settles to a fixed value and holds it.
A sustained value will cause the integrator to increase indefinitely.

Therefore, any combination of constructs will always converge as long as only ONE
integrator is used.

S < X

4

<<~
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8 Conclusion

This paper has introduced a straightforward, construct-based methodology for generating
digital signal processing (DSP) coefficients. By leveraging a small set of reusable constructs,
the approach simplifies the transition from control design concepts to practical implementation.
Through worked examples, the method has been shown to be both accessible and effective,
enabling rapid development of stable control structures without the need for extensive
symbolic manipulation.

Beyond demonstration, a convergence argument has been presented, ensuring that the method
consistently yields correct and stable results under typical design conditions. The constructs not
only reduce computational and conceptual overhead but also provide a framework that can be
extended to more complex control systems with confidence.
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